## REM Sleep Behavior Disorder and Implications for Neurodegeneration



Joyce K. Lee-Iannotti, MD 13<sup>th</sup> Annual Scientific Conference Maryland Sleep Society Saturday, October 28 10:45-11:45 am

### Disclosures

### No COI

- I will be discussing "off-label" use of the following medications:
  - Melatonin
  - Clonazepam
  - Gabapentin

### Objectives

- Describe the pathophysiology associated with REM Sleep Behavior Disorder (RBD)
- Discuss methods to diagnose and manage REM Sleep Behavior Disorder
- Review the current literature regarding future implications of RBD including development of Parkinson's disease



© ELSEVIER, INC. - NETTERIMAGES.COM



and Perretourner

ATLAS of HUMAN ANATOMY

and some states

Frank H. Netter, MD 1906-1991 American surgeon and medical illustrator



# ICSD-3 (AASM)

|                                          | ICSD II (2005)                                                                                                                                                                            | ICSD III (2014)                                                                                                     |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| NREM <u>Parasomnias</u>                  | Confusional Arousals<br>Sleepwalking<br>Sleep Terrors                                                                                                                                     | Disorders of Arousal<br>Confusional Arousals<br>Sleepwalking<br>Sleep Terrors<br>Sleep Related Eating Disorder      |
| REM Parasomnias                          | RBD<br>Recurrent Isolated Sleep Paralysis<br>Nightmare Disorder                                                                                                                           | RBD<br>Recurrent Isolated Sleep Paralysis<br>Nightmare Disorder                                                     |
| Other <u>Parasomnias</u>                 | Sleep Related Eating Disorder<br>Sleep Related Dissociative Disorder<br>Sleep Enuresis<br>Sleep Related Groaning (Catathrenia)<br>Exploding Head Syndrome<br>Sleep Related Hallucinations | Sleep Related Dissociative<br>Disorder<br>Sleep Enuresis<br>Exploding Head Syndrome<br>Sleep Related Hallucinations |
| Isolated Symptoms<br>and Normal Variants |                                                                                                                                                                                           | Sleep Talking                                                                                                       |



# Pearls: NREM vs REM Parasomnias

|                       | NREM parasomnia        | RBD                  |
|-----------------------|------------------------|----------------------|
| Time of Night         | Early                  | Late                 |
| Age                   | Young, (PD-Somnolence) | 50's +               |
| Family History        | LOTS                   | Partial (via PD)     |
| Eyes                  | Open                   | Closed               |
| Walking               | Yes                    | No                   |
| Talk back?            | Yes                    | No (unless awake)    |
| Interaction           | Full                   | Little (coincidence) |
| Associated ND disease | Little (late stages?)  | Synucleinopathy +++  |

### Courtesy of R. Postuma

### Side Note: Seizures Pearls

|            | NFLE Sleep-related hypermotor<br>epilepsy (SHE)                                                   | Parasomnias                           |
|------------|---------------------------------------------------------------------------------------------------|---------------------------------------|
| Duration   | <2 minutes                                                                                        | >10 minutes                           |
| Timing     | Events in the first 30 minutes                                                                    | Events later in the night             |
| Frequency  | Multiple events per<br>night                                                                      | 1-2 events/night                      |
| Complexity | Complex behavior<br>uncommon                                                                      | Often wandering and complex behavior  |
| Semiology  | Highly stereotyped, repetitive                                                                    | Variable semiology                    |
| Recall     | Often full recall of<br>events and speech<br>(exception: 2ndary<br>generalization → no<br>recall) | Event and speech recalled, not always |

# REM Sleep Behavior Disorder (RBD)

- Dream-enactment behavior associated with loss of muscle atonia in REM sleep
- For the term  $\rightarrow$  "Dr. Jekyl and Mr. Hyde Syndrome"



#### REM-atonia, REM-without-atonia, RBD and its causes



The pons, the site for generating REM sleep, simultaneously sends ascending activating signals (in red) to the motor cortex and descending inhibitory signals (in blue) to the spinal cord alphamotoneurons via the medulla, to result in REM atonia, with brief, benign twitches in REM sleep

Schenck et al, Sleep, 1986

# REM Sleep Behavior Disorder (RBD)

- Estimated prevalence 1% based on communitybased epidemiological studies
  - Middle aged, older adults
  - Switzerland, Japan
- Highest prevalence amongst men >50 yo
- $\blacktriangleright$  <sup>1</sup>/<sub>4</sub> of pts with PD experience RBD

Haba-Rubio J, Frauscher B, Marques-Vidal P, et al. Sleep 2017.

Sasai-Sakuma T, Takeuchi N, Asai Y, Inoue Y, Inoue Y. Sleep 2020.

### **RBD** and non-tremor predominant **PD**

PD + RBD patients are more likely to manifest with non-tremor predominant PD

# Freezing of gait (FOG) Postural instability Falls

Nobleza et al. Cureus. 2020 Dec 30;12(12):e12385.



FIGURE 2: Changes in the neural networks seen in RBD and PD with FOG

Blue = motor locomotor region Orange = REM sleep control Green = overlap between MLR + REM Black arrows = altered connection in RBD + PD with FOG

# REM Sleep Behavior Disorder (RBD)

- The minimum diagnostic criteria of RBD include movement of the body or limbs associated with dreaming and at least one of the following:
  - Potentially harmful sleep behavior
  - Dreams that appear to be acted out
  - Sleep behavior that disrupts sleep continuity
    - (Exp. Punching/ hitting spouse, running into walls, jumping out of windows)

## ICD Criteria for RBD

# TABLE 5-1International Classification of Sleep Disorders, Third<br/>Edition, Diagnostic Criteria for Rapid Eye Movement<br/>Sleep Behavior Disorder<sup>a</sup>

# All criteria of the following must be met for a diagnosis of rapid eye movement (REM) sleep behavior disorder

- A. Repeated episodes of sleep-related vocalization and/or complex motor behaviors
- B. These behaviors are documented by polysomnography to occur during REM sleep or, based on clinical history of dream enactment, are presumed to occur during REM sleep
  RSWA
- C. Polysomnographic recording demonstrates REM sleep without atonia
- D. The disturbance is not better explained by another sleep disorder, mental disorder, medication, or substance use
- <sup>a</sup> Reprinted with permission from the American Academy of Sleep Medicine.<sup>4</sup> © 2014 American Academy of Sleep Medicine.

### RBD is the only parasomnia that requires a PSG!

# RBD1Q One question Screening Tool

Have you ever been told, or suspected yourself, that you seem to 'act out your dreams' while asleep (for example, punching, flailing your arms in the air, making running movements, etc.)?"

Postuma et al, Mov Disord, 2012.

# REM Sleep Behavior Disorder (RBD)

### Diagnosis



- Polysomnographic video recording is the most important diagnostic test in RBD
- EEG, ECG, nasal flow, multiple electromyography channels
- RBD PROTOCOL extra limb leads
  - ► Legs → anterior tibialis x 2

  - Video very important!



### Released June 2023 Version 3 AASM.org

#### A. Technical Specifications<sup>33</sup>

 For monitoring leg movements (LMs), surface electrodes should be placed longitudinally and symmetrically in the middle of the anterior tibialis muscle so that they are 2-3 cm apart or 1/3 of the length of the anterior tibialis muscle, whichever is shorter. Both legs should be monitored for the presence of the leg movements. Separate channels for each leg are strongly preferred. Combining electrodes from the 2 legs to give 1 recorded channel may suffice for some clinical settings, although it should be recognized that this strategy may reduce the number of detected LMs. (see Figure 1) RECOMMENDED





 For monitoring leg movements, use of 60 Hz (notch) filters should be avoided. Impedances need to be less than 10,000 Ω. Less than 5,000 Ω is preferred but may be difficult to obtain. RECOMMENDED

3. Movements of the upper limbs may be sampled using a similar method as for legs if clinically indicated. (see Figures 2 and 3) OPTIONAL



Figure 2. Placement of electrodes on the flexor digitorum superficialis for detecting transient muscle activity in REM sleep. Illustration may not be to scale.

### Sinbar protocol (Sleep Innsbruck **Barcelona**)

© 2018 Amorican Academy of Sleep Medicine. All rights reserved.



4. For detecting bruxism, in addition to the recommended placement of chin EMG electrodes as noted in the adult sleep staging rules chapter (IV.C), additional masseter electrodes may be placed if clinically indicated.<sup>N2</sup> (see Figure 4) OPTIONAL



© 2018 American Academy of Sleep Medicine. All rights reserved.



- 5. For detecting transient muscle activity in REM sleep, use one of the following EMG recordings:<sup>NO</sup> OPTIONAL
  - a. Flexor digitorum superficialis (see Figure 2)
  - b. Extensor digitorum communis (see Figure 3)
- 6. For diagnosis of RBD, time-synchronized, audio-equipped video PSG is essential to document complex motor behaviors and vocalizations during REM sleep. A diagnosis of RBD is based on demonstration of such episodes or a characteristic clinical history of dream enactment in addition to polysomnographic evidence of REM sleep without atonia. RECOMMENDED

#### G. Scoring PSG Features of REM Sleep Behavior Disorder (RBD)

- 1. Score in accordance with the following definitions: RECOMMENDED
  - Sustained muscle activity (tonic activity) in REM sleep: An epoch of REM sleep with at least 50% of the duration of the epoch having a chin EMG amplitude greater than the minimum amplitude demonstrated in NREM sleep.
  - Excessive transient muscle activity (phasic activity) in REM sleep: In a 30-second epoch of REM sleep divided into 10 sequential 3-second mini-epochs, at least 5 (50%) of the mini-epochs contain bursts of transient muscle activity. In RBD, excessive transient muscle activity bursts are 0.1-5.0 seconds in duration and at least 4 times as high in amplitude as the background EMG activity.
- The polysomnographic characteristics of RBD are characterized by EITHER or BOTH of the following features: N1,N2,N3 RECOMMENDED
  - a. Sustained muscle activity in REM sleep in the chin EMG
  - b. Excessive transient muscle activity during REM in the chin or limb EMG



### Transient muscle activity (TMA)





Banner University Medicine



#### NORMATIVE REM SLEEP EMG VALUES FOR THE DIAGNOSIS OF RBD



http://dx.doi.org/10.5665/sleep.1886

### Normative EMG Values during REM Sleep for the Diagnosis of REM Sleep Behavior Disorder

Birgit Frauscher, MD<sup>\*1</sup>; Alex Iranzo, MD<sup>\*2</sup>; Carles Gaig, MD<sup>2</sup>; Viola Gschliesser, MD<sup>1</sup>; Marc Guaita, MD<sup>2</sup>; Verena Raffelseder, MD<sup>1</sup>; Laura Ehrmann, MD<sup>1</sup>; Nuria Sola, MD<sup>2</sup>; Manel Salamero, PhD<sup>3</sup>; Eduardo Tolosa, MD<sup>2</sup>; Werner Poewe, MD<sup>1</sup>; Joan Santamaria, MD<sup>2</sup>; Birgit Högl, MD<sup>1</sup>; for the SINBAR (Sleep Innsbruck Barcelona) Group

### 18% mentalis, 32% MM +FDS

\*Drs. Frauscher and Iranzo contributed equally to this work.

<sup>1</sup>Department of Neurology, Innsbruck Medical University, Innsbruck, Austria; <sup>2</sup>Neurology Service, Hospital Clinic de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain; <sup>3</sup>Psychology Service, Hospital Clinic de Barcelona, Barcelona, Spain

Background: Correct diagnosis of rapid eye movement sleep behavior disorder (RBD) is important because it can be the first manifestation of a neurodegenerative disease, it may lead to serious injury, and it is a well-treatable disorder. We evaluated the electromyographic (EMG) activity in the Sleep Innsbruck Barcelona (SINBAR) montage (mentalis, flexor digitorum superficialis, extensor digitorum brevis) and other muscles to obtain normative values for the correct diagnosis of RBD for clinical practice.

Setting: Two university hospital sleep disorder centers.

Participants: Thirty RBD patients (15 idiopathic [iRBD], 15 with Parkinson disease [PD]) and 30 matched controls recruited from patients with effectively treated sleep related breathing disorders.

Interventions: Not applicable.

Methods and Results: Participants underwent video-polysomnography, including registration of 11 body muscles. Tonic, phasic, and "any" (any type of EMG activity, irrespective of whether it consisted of tonic, phasic or a combination of both) EMG activity was blindly quantified for each muscle. When choosing a specificity of 100%, the 3-sec miniepoch cutoff for a diagnosis of RBD was 18% for "any" EMG activity in the mentalis muscle (area under the curve [AUC] 0.990). Discriminative power was higher in upper limb (100% specificity, AUC 0.987–9.997) than in lower limb muscles (100% specificity, AUC 0.813–0.852). The combination of "any" EMG activity in the mentalis muscle with both phasic flexor digitorum superficialis muscles yielded a cutoff of 32% (AUC 0.998) for patients with iRBD and with PD-RBD.

**Conclusion:** For the diagnosis of iRBD and RBD associated with PD, we recommend a polysomnographic montage quantifying "any" (any type of EMG activity, irrespective of whether it consisted of tonic, phasic or a combination of both) EMG activity in the mentalis muscle and phasic EMG activity in the right and left flexor digitorum superficialis muscles in the upper limbs with a cutoff of 32%, when using 3-sec miniepochs.

Keywords: SINBAR EMG montage, normal values, cutoff, EMG activity, quantification, movement disorders

Citation: Frauscher B; Iranzo A; Gaig C; Gschliesser V; Guaita M; Raffelseder V; Ehrmann L; Sola N; Salamero M; Tolosa E; Poewe W; Santamaria J; Högl B. Normative EMG values during REM sleep for the diagnosis of REM sleep behavior disorder. *SLEEP* 2012;35(6):835-847.

## Example epochs



Most common cause of iatrogenic RBD is medications – MAOI's, SSRI's, TCA's and SNRI's except buproprion.



Banner University Medicine

# Pseudo-RBD due to SRBD



- RBD can also be due to other sleep disorders including OSA and this scenario is termed as pseudo-RBD
- Usually resolves with optimal CPAP pressure
- Not associated with NDD if pseudo-RBD

## RBD Clip 1



Video used with consent and courtesy of Dr. Karin Johnson, MD University of Massachusetts Medical School-Baystate

## RBD Clip 2



Video used with consent and courtesy of Dr. Carlos Schenk MD University of Minnesota, <u>https://youtu.be/rFXYRQ9xPUA</u>

# **RBD** Treatment

- Clonazepam is effective in nearly 90% of patients but not always first line
  - 0.5-2 mg qhs
  - SE's: sleepiness, falls, cognitive deficits, dependence/tolerance
- Melatonin may be effective 3 mg (up to 12 mg)
  - Two small-scale studies helped >80%
  - Recent RCT may be negative
- Off label: Gabapentin ("Vitamin G"), Rotigitine patch
- Other meds: imipramine, carbamazepine, DA agonists in PD pts (pramipexole, levodopa)
- Remove triggers -- antidepressants
- Symptoms will return once off the medication

# **RBD** Treatment

- Educate the patient and bed partner about environmental safety
  - Remove dangerous objects from the room, mattress placed on floor, zip up patient in sleeping bag, bed rails, sleep alone





#### April 1, 2023





#### SPECIAL ARTICLES

### Management of REM sleep behavior disorder: an American Academy of Sleep Medicine clinical practice guideline

Michael Howell, MD<sup>1</sup>; Alon Y. Avidan, MD, MPH<sup>2</sup>; Nancy Foldvary-Schaefer, DO, MS<sup>3</sup>; Roneil G. Malkani, MD<sup>4,5</sup>; Emmanuel H. During, MD<sup>6,7</sup>; Joshua P. Roland, MD<sup>8,9</sup>; Stuart J. McCarter, MD<sup>10</sup>; Rochelle S. Zak, MD<sup>11</sup>; Gerard Carandang, MS<sup>12</sup>; Uzma Kazmi, MPH<sup>12</sup>; Kannan Ramar, MD, MBBS<sup>13</sup>

<sup>1</sup>Department of Neurology, University of Minnesota, Minnesota; <sup>2</sup>David Geffen School of Medicine at UCLA, Los Angeles, California; <sup>3</sup>Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio; <sup>4</sup>Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; <sup>5</sup>Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; <sup>6</sup>Department of Neurology, Division of Movement Disorders, Icahn School of Medicine at Mount Sinai, New York; New York; <sup>7</sup>Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; 8 Thirty Madison, New York, New York; New York; 9 Thirty Madison, New York; New York; 9 Thirty Madison, New York; 9 Thirty Ma <sup>9</sup>Department of Pulmonology, Critical Care, and Sleep Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California; <sup>10</sup>Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota; <sup>11</sup>Sleep Disorders Center, University of California, San Francisco, San Francisco, California; <sup>12</sup>American Academy of Sleep Medicine, Darien, Illinois: <sup>13</sup>Division of Pulmonary and Critical Care Medicine, Center for Sleep Medicine, Mayo Clinic, Rochester, Minnesota

### Howell et al, JCSM, April 2023

#### April 1, 2023

#### Table 2—Summary of recommended interventions in adult populations.

|                                 |                               | Critical Outcomes Showing Clinically Significant Improvement* |                             |                |  |  |  |  |
|---------------------------------|-------------------------------|---------------------------------------------------------------|-----------------------------|----------------|--|--|--|--|
| Intervention                    | Strength of<br>Recommendation | RBD Symptoms                                                  | RBDQ Score†<br>(behavioral) | RBD Frequency‡ |  |  |  |  |
| Isolated RBD                    |                               |                                                               |                             |                |  |  |  |  |
| Clonazepam                      | Conditional for               | 1                                                             | 1                           |                |  |  |  |  |
| Melatonin (immediate-release)   | Conditional for               | 1                                                             |                             | 1              |  |  |  |  |
| Pramipexole                     | Conditional for               | 1                                                             |                             | 1              |  |  |  |  |
| Rivastigmine                    | Conditional for               |                                                               |                             | 1              |  |  |  |  |
| Secondary RBD due to medical co | ondition                      |                                                               |                             |                |  |  |  |  |
| Clonazepam                      | Conditional for               | 1                                                             |                             |                |  |  |  |  |
| Melatonin (immediate-release)   | Conditional for               | 1                                                             |                             | 1              |  |  |  |  |
| Rivastigmine                    | Conditional for               |                                                               |                             | 1              |  |  |  |  |
| DBS                             | Conditional against           | Х                                                             |                             |                |  |  |  |  |
| Drug-induced RBD                | Drug-induced RBD              |                                                               |                             |                |  |  |  |  |
| Drug discontinuation            | Conditional for               | 1                                                             |                             |                |  |  |  |  |

\* < = critical outcomes showing clinically significant improvement. X = critical outcomes not showing clinically significant improvement. Blank cells = no reported data for this critical outcome. **†**RBDQ = RBD Questionnaire (includes Korean, Japanese, and Hong Kong versions). **‡**RBD frequency = the rate of RBD symptoms over a period of time. DBS = deep brain stimulation, RBD = rapid eye movement sleep behavior disorder.

### Howell et al, JCSM, April 2023

JCSM Journal of Clinical Sleep Medicin

#### doi:10.1093/brain/awz030



#### Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study

BRAIN 2019: 142; 744-759

744

Ronald B. Postuma,<sup>1,2</sup> Alex Iranzo,<sup>3</sup> Michele Hu,<sup>4</sup> Birgit Högl,<sup>5</sup> Bradley F. Boeve,<sup>6</sup> Raffaele Manni,<sup>7</sup> Wolfgang H. Oertel,<sup>8</sup> Isabelle Arnulf,<sup>9</sup> Luigi Ferini-Strambi,<sup>10</sup> Monica Puligheddu,<sup>11</sup> Elena Antelmi,<sup>12,13</sup> Valerie Cochen De Cock,<sup>14</sup> Dario Arnaldi,<sup>15</sup> Brit Mollenhauer,<sup>16</sup> Aleksandar Videnovic,<sup>17</sup> Karel Sonka,<sup>18</sup> Ki-Young Jung,<sup>19</sup> Dieter Kunz,<sup>20</sup> Yves Dauvilliers,<sup>21</sup> Federica Provini,<sup>22,23</sup> Simon J. Lewis,<sup>24</sup> Jitka Buskova,<sup>25</sup> Milena Pavlova,<sup>26</sup> Anna Heidbreder,<sup>27</sup> Jacques Y. Montplaisir,<sup>2</sup> Joan Santamaria,<sup>14</sup> Thomas R. Barber,<sup>4</sup> Ambra Stefani,<sup>5</sup> Erik K. St.Louis,<sup>6</sup> Michele Terzaghi,<sup>7</sup> Annette Janzen,<sup>8</sup> Smandra Leu-Semenescu,<sup>9</sup> Guiseppe Plazzi,<sup>12,13</sup> Flavio Nobili,<sup>15</sup> Friederike Sixel-Doering,<sup>16</sup> Petr Dusek,<sup>18</sup> Frederik Bes,<sup>20</sup> Pietro Cortelli,<sup>22,23</sup> Kaylena Ehgoetz Martens,<sup>24</sup> Jean-Francois Gagnon,<sup>28</sup> Carles Gaig,<sup>3</sup> Marco Zucconi,<sup>10</sup> Claudia Trenkwalder,<sup>15</sup> Ziv Gan-Or,<sup>29,30</sup> Christine Lo,<sup>4</sup> Michal Rolinski,<sup>4</sup> Philip Mahlknecht,<sup>5</sup> Evi Holzknecht,<sup>5</sup> Angel R. Boeve,<sup>6</sup> Luke N. Teigen,<sup>6</sup> Gianpaolo Toscano,<sup>7</sup> Geert Mayer,<sup>31</sup> Silvia Morbelli,<sup>32</sup> Benjamin Dawson,<sup>1</sup> Amelie Pelletier<sup>1,2</sup> and the International REM Sleep Behavior Disorder Study Group

See Morris and Weil (doi:10.1093/brain/awz014) for a scientific commentary on this article.

Postuma, Brain, 2019.

- Early studies showed a conversion rate of 80-90% within 1-2 decades to an asynuclein state Iranzo, Lancet Neurol, 2016.
- 1280 pts followed for an average of 4.6 yrs (range 1-19 yrs) showing a conversion rate of 6.3%/year with 73.5% converting after a 12-year f/u
   Predictors: abnormal motor testing, olfactory deficit, MCI, ED, abnormal DAT, color vision abn, constipation, REM atonia loss, advanced age



# 3. RBD can predict PD



1280 patient study, 24 centers from IRBDSG
Overall: 6-7% / year
50% by 7.5 years
73% by 12 years
Half parkinsonism, half DLB

Bottom line: **PSG-proven RBD** = neurodegeneration (synuclein every time)

International Parkinson and Movement Disorder Society | 555 East Wells Street, Suite 1100, Milwaukee WI 53202-3823 USA Tel: +1 414-276-2145 | www.movementdisorders.org | info@movementdisorders.org



11.7

| BERGETAL                                                                                                                                  |                         | 5 5          |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|
| TABLE 1. LRs of risk and prodroma                                                                                                         | I markers               | WHEN         |
|                                                                                                                                           | $LR^+$                  | LR⁻          |
| Risk markers                                                                                                                              |                         |              |
| Male sex                                                                                                                                  | 1.2 (male)              | 0.8 (female) |
| Regular pesticide exposure                                                                                                                | 1.5                     | n/a          |
| Occupational solvent exposure                                                                                                             | 1.5                     | n/a          |
| Nonuse of caffeine                                                                                                                        | 1.35                    | 0.88         |
| Smoking                                                                                                                                   |                         |              |
| Current                                                                                                                                   | n/a                     | 0.45         |
| Never                                                                                                                                     | 1.25                    | n/a          |
| Former                                                                                                                                    | n/a                     | 0.8          |
| Sibling had PD with age onset <50                                                                                                         | 7.5                     | n/a          |
| or                                                                                                                                        | 110                     |              |
| Any other first-degree relative with PD                                                                                                   | 2.5                     | n/a          |
| Or                                                                                                                                        | 2.0                     | 10 4         |
| Known gene mutation                                                                                                                       | see Supporting Table II | n/a          |
| SN hyperechogenicity                                                                                                                      | 4.7                     | 0.45         |
| Touromar marketo                                                                                                                          |                         |              |
| PSG-proven RBD                                                                                                                            | 130                     | 0.62         |
| or<br>Desitive PPD screen questionnaire with > 90% specificity                                                                            | 2.2                     | 0.76         |
| Positive NDD Scient questioninaire with >00% specificity<br>Departmentatic DET/SDECT cloarly abnormal (e.g. <65% permat 2 SDs below mean) | 2.5                     | 0.65         |
| Describle subthrashold parkinganism (IDDDS > 2 avaluding action tramar)                                                                   | 40                      | 0.05         |
| rossible subulteshold parkinsonistit (urbins >3 excluding action deficit)                                                                 | 10                      | 0.70         |
| Ul<br>Abnormal quantitativa mater teating                                                                                                 | 2.5                     | 0.60         |
| Abhormal quantitative motor testing                                                                                                       | 3.5                     | 0.00         |
|                                                                                                                                           | 4.0                     | 0.43         |
| Consupation                                                                                                                               | 2.2                     | 0.80         |
| Excessive dayume sonnolence                                                                                                               | 2.2                     | 0.88         |
| Symptomatic hypotension                                                                                                                   | 2.1                     | 0.87         |
| Severe erectile dysfunction                                                                                                               | 2.0                     | 0.90         |
| Urinary dystunction                                                                                                                       | 1.9                     | 0.90         |
| Depression ( $\pm$ anxiety)                                                                                                               | 1.8                     | 0.85         |

n/a, not applicable.

#### Berg et al. Movement Disorders 2015. Oct;30(12):1600-11.

### THE LANCET Neurology

Volume 20, Issue 8, August 2021, Pages 671-684

#### Review

# Biomarkers of conversion to $\alpha$ -synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder

Mitchell G Miglis MD <sup>a</sup> A <sup>B</sup>, Prof Charles H Adler MD <sup>b</sup>, Elena Antelmi MD <sup>c</sup>, Dario Arnaldi MD <sup>d</sup>, <sup>e</sup>, Luca Baldelli MD <sup>f</sup>, Prof Bradley F Boeve MD <sup>g</sup>, Matteo Cesari PhD <sup>h</sup>, Irene Dall'Antonia MD <sup>i</sup>, Prof Nico J Diederich MD <sup>j</sup>, Kathrin Doppler MD <sup>k</sup>, Petr Dušek MD <sup>i</sup>, Prof Raffaele Ferri MD <sup>l</sup>, Prof Jean-François Gagnon PhD <sup>m</sup>, Ziv Gan-Or MD <sup>n</sup>, Wiebke Hermann MD <sup>o, p</sup>, Prof Birgit Högl MD <sup>h</sup>, Prof Michele T Hu MD <sup>q</sup>, Alex Iranzo MD <sup>r</sup>, Annette Janzen MD <sup>s</sup>, Anastasia Kuzkina MD <sup>k</sup>, Jee-Young Lee MD <sup>t</sup>, Prof Klaus L Leenders MD <sup>u</sup>, Prof Simon J G Lewis MD <sup>v</sup>, Claudio Liguori MD <sup>w</sup>, Jun Liu MD <sup>x</sup>, Christine Lo MD <sup>q</sup>, Kaylena A Ehgoetz Martens PhD <sup>y</sup>, Jiri Nepozitek MD <sup>i</sup>, Prof Giuseppe Plazzi MD <sup>z</sup>, <sup>aa</sup>, Prof Federica Provini MD <sup>f, z, ab</sup>, Monica Puligheddu MD <sup>ac</sup>, Michal Rolinski MD <sup>ad</sup>, Jan Rusz PhD <sup>ae</sup>, Ambra Stefani MD <sup>h</sup>, Rebekah L S Summers PhD <sup>af</sup>, Dallah Yoo MD <sup>ag</sup>, Jennifer Zitser MD <sup>ah, ai</sup>, Prof Wolfgang H Oertel MD <sup>s, aj</sup>

- <sup>a</sup> Department of Neurology and Neurological Sciences and Department of Psychiatry and Behavioral Science, Stanford University, Palo Alto, CA, USA
- <sup>b</sup> Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
- <sup>c</sup> Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy

### Miglis, et al. Lancet Neuro 2021.



### **Biomarkers for pheno-conversion**

|                                                                                                                          | Subtype                               | Availability | Cost     | Sensitivity and specificity                                                                       | Remarks                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|----------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Neurophysiology                                                                                                          |                                       |              |          |                                                                                                   |                                                                                                                                  |
| RSWA quantified by visual<br>or automated methods<br>(eg, SINBAR, rapid-eye-<br>movement atonia index)                   | Diagnostic, prognostic,<br>monitoring | High         | Low      | Diagnostic: 85–95% and<br>85–95%; <sup>97-105</sup> prognostic:<br>78–89% and 61–70% <sup>5</sup> | Robust data supporting both visual and<br>automatic methods, with similar results<br>despite differences in methods; few studies |
| Cyclic alternating pattern rate                                                                                          | Diagnostic, prognostic                | Moderate     | Moderate | NA                                                                                                | Only one study; <sup>\$</sup> special analyses of EEG required                                                                   |
| Biomarkers obtained<br>through artificial<br>intelligence, machine<br>learning, and deep neural<br>network-based methods | Diagnostic, prognostic,<br>combined   | Low          | High     | Diagnostic: 91–98% and<br>93–94%; prognostic:<br>AUC 78% <sup>9:10</sup>                          | Few studies9:10                                                                                                                  |

RSWA = the neurophysiological hallmark of RBD •One of the earliest signs of neurodegeneration •May show progression of disease

| function | Lack si | oecific ( | protocols. | ap | pears | ater | in th | e d | isease state |  |
|----------|---------|-----------|------------|----|-------|------|-------|-----|--------------|--|
|          |         |           |            |    |       |      |       |     |              |  |

| Motor function Lac                                                                          | k specific protoc                                  | ols, appe  | ars later  | in the disease stat                                                                                           | e                                                                                                                                                                |
|---------------------------------------------------------------------------------------------|----------------------------------------------------|------------|------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Upper extremity alternate-<br>tap test                                                      | Diagnostic, prognostic,<br>monitoring, combined    | High       | Low        | Year 0: 100% and 83%; <sup>24</sup><br>year -1: 92% and 86%;<br>year -2: 88% and 89%;<br>year -3: 91% and 86% | Easy to do; year 0=phenoconversion to PD or<br>DLB; years -1, -2, -3=years before<br>phenoconversion                                                             |
| Speech abnormalities<br>quantified by means of<br>acoustic analysis                         | Prognostic,<br>monitoring                          | High       | Low        | 67% and 71% <sup>16</sup>                                                                                     | Easy to do; only cross-sectional validation<br>studies                                                                                                           |
| Gait dysfunction by<br>instrumental analysis                                                | Prognostic,<br>monitoring                          | Moderate   | High       | NA                                                                                                            | Limited to few specialised centres; cross-<br>sectional studies only                                                                                             |
| Wearable devices and<br>smartphones                                                         | Prognostic,<br>monitoring                          | High       | Low        | 92% and 90% <sup>18</sup>                                                                                     | Cross-sectional validation studies only                                                                                                                          |
| Cognition Seems                                                                             | s to point more t                                  | o DLB tha  | in PD      |                                                                                                               |                                                                                                                                                                  |
| Trail Making Test Part B<br>Executive                                                       | Diagnostic, prognostic, monitoring, combined       | High       | Low        | Year 0: 100% and 83%; <sup>24</sup><br>year -1: 92% and 86%;<br>year -2: 88% and 89%;                         | Only one longitudinal study; early<br>identification of prodromal DLB;<br>year 0=phenoconversion to DLB; years –1,                                               |
| function                                                                                    |                                                    | 1.1        | 2          | year-3: 91% and 60%                                                                                           | -2, -3=years before phenoconversion                                                                                                                              |
| Semantic verbal fluency                                                                     | Monitoring,<br>diagnostic, prognostic,<br>combined | High       | Low        | Year 0: 91% and 97%; <sup>44</sup><br>year -1: 91% and 91%;<br>year -2: 80% and 91%;<br>year -3: 90% and 74%  | Only one longitudinal study; cognitive change<br>over time for prodromal DLB;<br>year 0=phenoconversion to DLB; years –1,<br>–2, –3=years before phenoconversion |
| Rey Auditory-Verbal<br>Learning Test (immediate                                             | Diagnostic, prognostic, monitoring, combined       | High       | Low        | Year 0: 92% and 89%; <sup>24</sup><br>year -1: 100% and 89%;                                                  | Only one longitudinal study; cognitive change over time for prodromal DLB;                                                                                       |
| recall) Verbal epis                                                                         | odic memory                                        |            |            | year -2: 100% and 75%;<br>year -3: 82% and 89%                                                                | year 0=phenoconversion to DLB; years -1,<br>-2, -3=years prior to phenoconversion                                                                                |
| Olfaction Hyposo                                                                            | mia = synuclein                                    | depositio  | n in the c | olfactory bulbs                                                                                               |                                                                                                                                                                  |
| Odour identification<br>testing (eg, Sniffin' Sticks,<br>UPSIT)                             | Diagnostic, prognostic, combined                   | High       | Low        | 86-91% and 76-88% <sup>106</sup>                                                                              | Easily done with conversion data between<br>Sniffin and UPSIT available <sup>wy</sup>                                                                            |
| Ophthalmic function Co                                                                      | olor discriminati                                  | on = thinn | ing of th  | e retinal ganglion                                                                                            | cells                                                                                                                                                            |
| Farnsworth-Munsell<br>100-Hue test                                                          | Diagnostic, prognostic                             | Moderate   | Low        | NA                                                                                                            | Easily done; limited data                                                                                                                                        |
| Optical coherence<br>tomography (structural<br>imaging of the parafoveal<br>avascular zone) | Diagnostic, prognostic                             | Low        | Moderate   | NA                                                                                                            | Highly promising for investigating other<br>pathways at risk of early degeneration                                                                               |

Miglis, et al. Lancet Neuro 2021. 20(8):671-684

## **Biomarkers for pheno-conversion**

|                                           | Subtype                                         | Availability | Cost      | Sensitivity and specificity | Remarks                                                                                      |  |  |  |
|-------------------------------------------|-------------------------------------------------|--------------|-----------|-----------------------------|----------------------------------------------------------------------------------------------|--|--|--|
| (Continued from previous page)            |                                                 |              |           |                             |                                                                                              |  |  |  |
| Autonomic function Cons                   | stipation, erectile dy                          | sfunction =  | greatest  | risk of phenoconversi       | on, putaminal DA dysfxn, MSA                                                                 |  |  |  |
| Autonomic questionnaires                  | Diagnostic, prognostic,<br>monitoring, combined | High         | Low       | NA                          | Easily done and can be easily repeated over time                                             |  |  |  |
| Heart rate variability<br>analysis        | Diagnostic                                      | High         | Low       | NA                          | Easily obtained from baseline vPSG; sensitive to artifact                                    |  |  |  |
| Metaiodobenzylguanidine                   | Diagnostic                                      | Moderate     | Moderate  | NA                          | Might help distinguish PD and DLB from MSA <sup>51</sup>                                     |  |  |  |
| Cardiovascular reflex<br>testing          | Diagnostic, prognostic,<br>monitoring, combined | Low          | Moderate  | NA                          | Limited to few specialised centres; might help distinguish PD and DLB from MSA <sup>49</sup> |  |  |  |
| Biofluids RT-QuIC =                       | = real-time quaking                             | -induced co  | nversion, | ID pathological alpha       | -synuclein deposition                                                                        |  |  |  |
| CSF RT-QuIC                               | Diagnostic, prognostic, monitoring              | Low          | Moderate  | 100% and 98%55              | Somewhat invasive                                                                            |  |  |  |
| Nasal swabs (olfactory<br>mucosa) RT-QuIC | Diagnostic                                      | Moderate     | Moderate  | 44·4% and 90% <sup>57</sup> | Minimally invasive, ENT specialist needed for sampling                                       |  |  |  |
| Serum neuronal exosomal<br>α-synuclein    | Diagnostic                                      | Low          | High      | 95% and 93%59               | Most appealing serum marker sensitivity and specificity                                      |  |  |  |

Miglis, et al. Lancet Neuro 2021. 20(8):671-684



"Comma"-shaped Possible essential tremor "Period"-shaped

Possible parkinsonian syndrome

| Neuroimaging                                                                                                                 | DAT scans = prese                               | nce of DA tr | ansporter | s in the basal ganglia                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------|-----------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>123</sup> I-FP SPECT (dopamine<br>transporter SPECT)                                                                    | Diagnostic, prognostic,<br>monitoring, combined | Moderate     | Moderate  | 29·3% and 100% <sup>71</sup>                                                                                                  | Low diagnostic value in differentiating<br>patients with isolated RBD from controls;<br>high prognostic value in identifying future<br>phenoconverters; low prognostic value in<br>identifying phenoconversion subtype;<br>responsive to dopamine-oriented therapy                                                                                                  |
| <sup>18</sup> F-FDG PET                                                                                                      | Diagnostic,<br>monitoring, combined             | Moderate     | Moderate  | 52.4% and 100% <sup>6273</sup>                                                                                                | Moderate diagnostic value in differentiating<br>patients with isolated RBD from controls;<br>high diagnostic potential in predicting<br>$\alpha$ -synucleinopathy subtype but requires<br>independent validation; possible prognostic<br>value has yet to be shown in large series;<br>useful for monitoring disease progression;<br>possibly responsive to therapy |
| MRI for nigrosome, MRI for<br>substantia nigra<br>neuromelanin, MRI for<br>cortical thinning, and MRI<br>for DBM<br>Function | Diagnostic, prognostic,<br>combined<br>nal MRI  | Moderate     | Moderate  | MRI nigrosome:<br>27·5-77% and 97-92·3%; <sup>74</sup><br>MRI substantia nigra<br>neuromelanin:<br>90% and 94% <sup>108</sup> | Good diagnostic potential in differentiating<br>patients with isolated RBD from controls<br>(nigrosome, substantia nigra neuromelanin)<br>as well as RBD subtype (ie, RBD with MCI or<br>cortical thinning); possible prognostic value<br>for DLB (DBM); all markers require<br>independent study confirmation                                                      |

Miglis, et al. Lancet Neuro 2021. 20(8):671-684

# **Biomarkers for pheno-conversion**

| Tissue biopsy Look for phosphorylated alpha-synuclein deposits |                                                 |             |             |                                      |                                                                                            |  |  |
|----------------------------------------------------------------|-------------------------------------------------|-------------|-------------|--------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| Colon biopsy                                                   | Diagnostic                                      | Low         | Moderate    | 24% and 100% <sup>82</sup>           | Invasive; poor sensitivity                                                                 |  |  |
| Major salivary glands                                          | Diagnostic                                      | Low         | Moderate    | 89% and 100% <sup>83</sup>           | Invasive, surgeon needed for sampling; high sensitivity if glandular tissue obtained       |  |  |
| Minor salivary glands                                          | Diagnostic                                      | Moderate    | Moderate    | 50% and 97% <sup>84</sup>            | Invasive, surgeon needed for sampling; poor sensitivity                                    |  |  |
| Skin biopsy                                                    | Diagnostic, prognostic,<br>monitoring, combined | Moderate    | Moderate    | 58%-87% and 100% <sup>35,86,87</sup> | Easy to do, minimally invasive, but analysis requires expertise; might help distinguish PD |  |  |
|                                                                |                                                 | C7, C8, T10 | paraspinal, | leg via IMF techniques               | and DLB from MSA <sup>51</sup>                                                             |  |  |
| Genetic testing                                                | TBD                                             |             |             |                                      |                                                                                            |  |  |
| GBA variants                                                   | Prognostic                                      | Moderate    | Moderate    | NA                                   | Might help predict the rate of<br>phenoconversion <sup>95</sup>                            |  |  |
| SNCA 5' variants                                               | Prognostic                                      | Moderate    | Moderate    | NA                                   | Might help predict the rate of<br>phenoconversion <sup>96</sup>                            |  |  |



Tel: +1 414-276-2145 | www.movementdisorders.org | info@movementdisorders.org



### Neuroprotective Trials in REM Sleep Behavior Disorder

The Way Forward Becomes Clearer

Ronald B. Postuma, MD, MSc

Neurology® 2022;99:S19-S25. doi:10.1212/WNL.000000000200235

Correspondence Dr. Postuma ron.postuma@mcgill.ca

- As neuroprotective therapies are being developed, interest is turning to prodromal stages to test and eventually use these therapies, while there is still time to prevent irreversible degeneration.
  - Any neuroprotective therapy against a progressive neurodegenerative disease should be applied as early as possible in the disease course.



### Neuroprotective Trials in REM Sleep Behavior Disorder

The Way Forward Becomes Clearer

Ronald B. Postuma, MD, MSc

Neurology® 2022;99:S19-S25. doi:10.1212/WNL.000000000200235

Correspondence Dr. Postuma ron.postuma@mcgill.ca

- In most series, the interval between development/ diagnosis of RBD and defined NDD averages 10–15 years.
  - olfaction (20 years)
  - autonomic dysfunction (10–25 years)
  - motor and cognitive abnormalities have prodromal intervals of 5–8 years.
    - progress slowly initially, followed more rapid loss soon before phenoconversion, so testing only has sufficient specificity in the 2–3 years before diagnosis



### **Neuroprotective Trials in REM Sleep Behavior Disorder**

The Way Forward Becomes Clearer

Ronald B. Postuma, MD, MSc

Neurology® 2022;99:S19-S25. doi:10.1212/WNL.000000000200235

Correspondence Dr. Postuma ron.postuma@mcgill.ca

Targeted therapies

- Synuclein
  - Passive immunotherapy, active immunization, small molecule aggregation inhibitors, and antisense therapy to reduce synuclein synthesis
- Lysosome and Glucocerebrosidase A

\*no clinical trials yet, but likely coming



Clinicaltrials.gov NCT03623672







### Parkinson's Progression Markers Initiative





### Pilot Study Comparing Home Sleep Profiler to In-laboratory Polysomnogram for RBD Diagnosis



International Congress of Parkinson's Disease and Movement Disorders® NICE. FRANCE SEPTEMBER 22-26, 2019





- Gregory Lazarz, MD, Joyce Lee-Iannotti, MD, Dan Levendowski, Cyrus Guevarra, RPSGT, Jason Jones, RPSGT, David Shprecher, DO MSci
- Objective: To compare the Sleep Profiler (SP), an FDAapproved device for home evaluation of sleep disorders, to the gold standard sleep laboratory polysomnogram (PSG) in evaluation of dream enactment behavior.
- Background: Diagnosis of REM sleep behavior disorder (RBD) is strongly associated with developing synucleinopathies, particularly Lewy body dementia and Parkinson disease, but requires PSG for confirmatory diagnosis. Capturing RBD during a one-night PSG can be challenging due to night-to-night variability of dream enactment behaviors and can be costly to repeat.

# Our Research





Methods: During an overnight **PSG** (with seizure and four-limb **RBD** protocol), we simultaneously collected Sleep Profiler data on 6 subjects recruited with recurrent dream enactment behavior but no evidence of neurodegenerative disease. Independent sleep reviewers analyzed the data from

3 channels of frontal EEG Pulse rate and ECG Quantitative snoring Head movement and head position Sub-mental EMG



#### Sample-Sleep-Profiler-Signals



# Our Research



- Sleep efficiencies by PSG and SP were 85.3% and 84.6%, respectively, while the median sleep times were identical (358 min).
- The median sleep onset latency for the PSG was 16 min and 22 min for the SP with a median difference of 5 minutes.
- The PSG and SP REM percentages were 14.5% and 13%, with a median difference of 1.3%.
- 4 out of 6 subjects had REM sleep without atonia (RSWA) and concordant dream enactment on both the PSG data and the SP data
- Of the 4 subjects with RSWA, 3 had newly diagnosed obstructive sleep apnea (mean AHI 13.3, range 9.7-16.2/hr).

# Our Research

Conclusions: The Sleep Profiler is worthy of larger scale validation studies to show equivalence with PSG in diagnosis of RBD. We suggest the SP be configured to include capabilities to measure airflow signals to screen for sleep apnea and monitor movement in all four limbs for better detection of RSWA. Such studies should also measure potential benefits in terms of cost and feasibility of recruitment of RBD subjects into neurodegenerative disease research trials.





#### RBD Severity Scale - Patient Version (RBDSS - PT)

You are answering this questionnaire because you have been diagnosed with REM sleep behavior disorder (or RBD). Acting out dreams at night is often caused by RBD. Normally when we dream, we are unable to move. However, in RBD, you are capable of moving during dreams. These questions are to help us understand how severe your RBD is.

Because you may not be aware what you do while asleep, we encourage you to answer these questions with the **help of a bed partner** or someone who lives with you, if available.

A. Introductory questions

| <ol> <li>Do you live alone? Yes □ No □<br/>If yes, skip to question 3.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| <ol> <li>Do you currently have a bed partner (that is, someone<br/>who sleeps most nights in the same bed as you)?<br/>If yes, skip to question 2.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes 🗌 No 🗌                                                                                        |
| 1b. Did you used to sleep with a bed partner and had to move<br>apart because of your acting out of dreams?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes 🔲 No                                                                                          |
| <ol> <li>Who is providing information for this questionnaire right now?</li> <li>Myself, with no other assistance</li> <li>Must be with the average of much directory.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
| Myself, with the assistance of my bed partner Myself, with someone who lives with me, but is not my be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ed partner.                                                                                       |
| <ul> <li>3a) Over the last month, how often did you have disturbing dream</li> <li>Never (skip to question 4)</li> <li>Rarely (&lt;1 time per week),</li> <li>Occasionally (1-2 times per week),</li> <li>Frequently (&gt;7 times per week),</li> <li>Very frequently (&gt;7 times per week; more than once per</li> <li>3b) Overall, how distressing are these dreams/nightmares to you?</li> <li>Not at all</li> <li>Mild - They might be unpleasant, but they do not really be</li> <li>Moderate - Enough to disturb my sleep or make me anxio</li> <li>Severe - They are yeavy babtersome, enough to disturb my</li> </ul> | ns or nightmares?<br>night)<br>other me much<br>uus about falling asleep<br>p function during the |
| daytime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | runction during the                                                                               |
| 4a) Over the last month, how often have you talked loudly or yells         (loudly' means       enough that you might wake an average perso         with you).       Never (skip to question 5)         Rarely (<1 time per week),                                                                                                                                                                                                                                                                                                                                                                                             | ed during your sleep?<br>on who is in the room                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |



Red: Frequency Blue: severity and distress Categories: Dream content, Vocalizations, movements, injuries

Page 1 of 21

£







Banner Health



### Continued Validation of the RBD symptom severity scale (RBDSSS) in the North American Prodromal Synucleinopathy (NAPS) consortium

Andrea O. Busicescu, BA, University of Arizona College of Medicine, Phoenix

Parichita Choudhury, MD, Joyce K. Lee-lannotti, MD, Pooja Rangan, MBBS, MPH, Ron Postuma, MD, on behalf of the NAPS consortium

#### Introduction and Research Question

REM Sleep Behavior Disorder (RBD) is a parasomnia characterized by dream enactment. The International RBD Study Group developed the RBD symptom severity scale (RDSSS) to assess symptom severity in clinical and research practice. The objective of this study is to assess the psychometric and clinimetric properties of the RBDSSS in participants enrolled in the North American Prodromal Synucleinopathy (NAPS) Consortium for RBD.

#### **Materials and Methods**

NAPS participants with polysomnogramconfirmed RBD and their bedpartners completed the RBDSSS (patient and bed-partner versions). The RBDSSS is an 8-item questionnaire, assessing frequency and severity/impact of dream content, vocalizations, movements, and injuries associated with RBD, with higher scores indicating more severe symptoms. Total scores were derived by multiplying assigned point values for frequency and severity (for each question) and summing them for individual RBDSSS-PT scores (maximum=54) and RBDSSS-BP scores (maximum=38). Item response theory (IRT) with graded response model was used to assess RBDSSS properties and responses to individual questions on the instrument.

| Results                               |  |
|---------------------------------------|--|
| Total cross-sectional data<br>(n=261) |  |
| 65.3 ± 9.96                           |  |
| 210 (80.5%)                           |  |
| 51.9 ± 15.7                           |  |
| 16.2 ± 3.0                            |  |
| RBD Severity Scale Data               |  |
| 10 (4-18)                             |  |
| 8 (4-15)                              |  |
| 3 (3-4)                               |  |
| Medication use (Lifetime), n (%)      |  |
| 207 (80.5%)                           |  |
| 127 (48.7%)                           |  |
| 146 (55.9%)                           |  |
| 20 (7.7%)                             |  |
| Current medication use, n (%)         |  |
| 184 (71.0%)                           |  |
| 106 (40.6%)                           |  |
| 117 (44.8%)                           |  |
| 14 (5.4%)                             |  |
|                                       |  |

Table 1: Characteristics of participants and RBD severity scores



Figure 1: Distribution of RBDSSS-PT (a) and RBDSSS-BP (b) by sex and age of symptom onset. Red bars = women, blue bars = men.



Figure 2: Category characteristic curves for RBDSSS-PT. The left column represents frequency questions and right column represents severity/impact questions. These curves demonstrate the probability of endorsing a category for each item ('never' to 'very frequently' and 'not at all' to 'severe' for impact). Theta on the X-axis demonstrates the RBD severity trait (overall RBD-severity), and each color curve corresponds to a number (denoted in the legend) which is the category in ascending order (0=none, 1=rarely, 2=occasionally, etc.). (IRT data table)

#### NPS CONSORTIUM For REM Sleep Behavior Disorder

#### Summary

- The RBDSSS demonstrates good internal consistency, validity, and discriminatory value to measure RBD severity.
- Questions about movement severity were most sensitive in discriminating overall RBD severity, detecting slight variations. Questions about injury severity were most indicative of highest RBD severity.
- Analysis using graded response theory showed that the RBDSSS assesses RBD severity effectively across a range of overall severity, and all items presented high to very-high discriminatory properties. Individual item responses can thus be used as an outcome measure for treatment efficacy.
- Participant-reported RBD severity was no different between sexes, but RBD severity reported by bed-partners and clinicians was lower for female participants. Women were also less likely to be treated with medications.
- Future direction: Longitudinal assessment to define minimum clinically meaningful change. Correlation of scale scores with measured symptoms via home monitoring devices.

#### Acknowledgements

Funded by the NAPS Consortium (NIH Grant R34 AG056639 and U19 AG071754), with special acknowledgment for the NAPS participants.



"Better than a thousand days of diligent study is one day with a great mentor."

-Japanese Proverb





### https://www.parkinson.org/parkinsons-awareness-month







HE MICHAEL J. FOX FOUNDATION OR PARKINSON'S RESEARCH

### Jeffrey Charles Reese 7/24/49-3/11/2020





Thank you!

**Questions?** 

Joyce.lee-lannotti@bannerhealth.com Jkleemd@arizona.edu